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Abstract. By reviewing the first-principles studies of the many-electron electronic structures
of underdoped La2−xSrxCuO4 and YBa2Cu3O7 performed by Kamimura and co-workers,
unusual electronic states are clarified. That is, the dopant holes move coherently by taking
the Zhang–Rice spin singlet and Hund’s coupling spin triplet alternately in the spin-correlated
region of antiferromagnetic ordering due to the Cu localized spins, without destroying the
antiferromagnetic order. This creates a metallic state which leads to superconductivity. The
coexistence of (i) the antiferromagnetic spin ordering and (ii) the ordering in the appearance
of the Zhang–Rice singlet and the Hund’s coupling triplet results in the small Fermi surface
for a carrier system and also leads to the decrease in the electronic entropy below a certain
temperature at which the Fermi surface changes from a larger one to smaller ones. This is the
microscopic origin of the pseudogap, the concept of which was originally proposed by Loram
and co-workers in terms of the Fermi liquid picture.

1. Introduction

The discovery of high-temperature superconductivity in cuprates by Bednorz and Müller [1]
has led to an intensive search for the mechanism of the superconductivity. Anderson [2]
first pointed out the important role of electron correlation in the mechanism of the super-
conductivity. Since then, a number of theoretical models have been proposed [3, 4]. Most
of them are based on a Cu dx2−y2–O pσ hybridized band in a CuO2 layer, while Kamimura
et al [5, 6] insisted that the Hund coupling spin-triplet state based on a Cu dz2–in-plane O pσ
and apical O pz hybridized band plays an important role in La2−xSrxCuO4 (abbreviated as
LaSCO) when the average distance between apical oxygen and Cu in the CuO6 octahedra
decreases with increasing Sr concentration so as to lower the total electrostatic energy [7].
The theoretical prediction of the contraction of the Cu–apical O distance made by Shima
et al [7] has been experimentally verified by recent neutron diffraction experiments by
Egami et al [8] for LaSCO and other copper oxides, and by Cavaet al [9] and Shmahl
et al [10] for YBCO.

Before the neutron experiments were carried out, Boyceet al [11] had already pointed
out for the first time the contraction of the Cu–apical O distance upon Sr doping, on the
basis of the EXAFS experiments. Taking into account these facts, Kamimura and Eto [12]
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Figure 1. The energy difference between the1A1g and3B1g states in La2−xSrxCuO4 calculated
by the MCSCF variational methods as a function of the apical O–Cu distance, where the Cu–
apical O distance of a CuO6 octahedron,c (see the inset of the figure), changes according to the
hole concentrationx (after Kamimura and Eto (reference [12])). Thus the hole concentration
corresponding to a value ofc is also indicated. Whenx reachesxc, the 3B1g state becomes the
lowest, wherexc lies at around 0.1 in the underdoped region.

Figure 2. Schematic views of the1A1g and3B1g multiplet states in a CuO6 octahedron, together
with views of the spatial extents of the a∗1g and b1g orbitals. Hatched and solid arrows represent
the spin of a carrier and a localized Cu spin, respectively.

performed a multi-configuration self-consistent-field (MCSCF) variational calculation with
configuration interactions (CI) to determine the ground state of a CuO6 octahedron embedded
in LaSCO for various Sr concentrations, and showed that the ground state changes from
the spin-singlet state,1A1g, to the spin-triplet state,3B1g, in the underdoped region, when
the Sr concentration increases, where A1g and B1g represent irreducible representations of a
tetragonal symmetry group, D4h. (Hereafter we call the many-electron electronic states such
as1A1g, 3B1g, etc, ‘multiplets’.) The results calculated by Kamimura and Eto [12] are shown
in figure 1, where the energy difference between the1A1g and 3B1g multiplets is plotted
as a function of the apical O–Cu distancec, with the Cu–O distancea in a CuO2 plane
being kept constant. As shown in figure 2, the dopant holes in the1A1g multiplet occupy a
bonding b1g orbital consisting of the in-plane oxygen pσ orbitals hybridized with a Cu dx2−y2

orbital while in the3B1g multiplet they occupy an antibonding a∗1g orbital consisting of a Cu
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dz2 orbital hybridized with the in-plane oxygen pσ and the apical oxygen pz orbitals, in the
presence of a localized spin ofS = 1/2 around Cu sites which is due to the effect of strong
electron correlation. TheseS = 1/2 localized spins give rise to antiferromagnetic two-
dimensional spin ordering due to the superexchange interactions via intervening oxygen
ions over a region of the spin-correlation length, when the CuO6 octahedra compose a
periodic arrangement in CuO2 layers.

As seen in figure 1, the3B1g state in La2−xSrxCuO4 is lowered by only 0.1 eV even for
x = 0.2 as compared with the1A1g state, so the transfer interactions between neighbouring
CuO6 octahedra, which are of the order of 0.3 eV, make these two states mixed in the
underdoped superconducting state. In view of this, Kamimura and Ushio [13] constructed
many-electron energy bands for LaSCO in such a way as to allow the coexistence of the
1A1g and 3B1g states.

In order to investigate the existence of the3B1g state, Chenet al [14] performed
polarization-dependent x-ray absorption measurements for O K and Cu L edges in LaSCO.
For the Cu L edge, they observed the doping-induced satellite peak (L′

3) for both
polarizations of the electric vector of the x-raysE, parallel and perpendicular to thec-
axis, in a shoulder area of the doping-independent Cu L3 line with the intensity ratio of
about 1 to 9, where the L3 line corresponds to transitions from the Cu 2p core level to
the upper Hubbard Cu dx2−y2 band, indicating the existence of localized spins. Since the
former (E ‖ c) and the latter (E ⊥ c) polarizations detect high-spin (3B1g) and low-spin
(1A1g) multiplets, respectively, the appearance of the doping-induced satellite peak for both
polarizations at the same energy suggested that the state of the dopant holes must be a single
coherent state consisting of high- and low-spin states. For the compounds Tl2Ba2CaCu2O8

and Tl2Ba2Ca2Cu3O3 as well as LaSCO, Pellegrinet al [15] have also found polarization
dependence, similar to that found by Chenet al [14].

In 1989 Bianconiet al [16] also reported that the peak energy separation between
transitions for polarizations parallel and perpendicular to thec-axis in LaSCO decreases
towards zero when the Sr concentration increases from a non-superconducting regime to a
superconducting regime, consistently with the above experimental results.

The existence of localized spins on Cu indicated by the observation of the Cu L3 line
is also supported by neutron scattering experiments. For example, Birgeneauet al [17]
showed the coexistence of the spin correlation of localized spins and superconductivity in
LaSCO; that is, the spins of Cu dx2−y2 holes form a two-dimensional local antiferromagnetic
(AF) order even in the superconducting state. Then Kamimura and Suwa [18] pointed out
that the dopant holes may move coherently over a long distance without destroying the local
AF order, when the dopant holes take high- and low-spin multiplets alternately in a region
of antiferromagnetically coupled localized spins.

They proposed a coupled spin-fermion-type effective Hamiltonian describing the above
unusual electronic structure. Then Kamimura and Ushio [13, 19] constructed the many-
electron energy bands, Fermi surfaces, and the density of states by solving approximately
the effective Hamiltonian proposed by Kamimura and Suwa. Using these energy bands,
Fermi surfaces, and the density of states including the many-body effect, Kamimuraet al
[20] investigated the mechanism of superconductivity in hole-doped copper oxides, and
recently they showed quantitatively that the electronic structures calculated by Kamimura
and Ushio create a d-wave pairing even in the phonon mechanism. Then Matsunoet al [21]
calculated the hole concentration dependence of the superconducting transition temperature
in LaSCO and found good agreement with experimental results given by Takagiet al [22].

In this article we first extend the calculation carried out by Kamimura and Eto [12] to
a CuO5 pyramid embedded in superconducting YBa2Cu3O7 (abbreviated as YBCO7) with
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Tc = 90 K. For this purpose we first describe a cluster model for a CuO5 cluster in YBCO7−δ
in section 2. In section 3 we briefly review the MCSCF-CI method. In section 4 the
calculated results are presented. In particular, an important role of the charge-density wave
in a Cu–O chain in determining the electronic structure of YBCO7 is clarified. In section 5
the idea put forward by Kamimura and Suwa of constructing the electronic structure in the
underdoped superconducting concentration region of the cuprate [18] is reviewed, and then
experimental evidence in support of Kamimura and Suwa’s idea is presented in section 6. In
section 7 the effective Hamiltonian for the Kamimura–Suwa model is presented. In section
8 a method for calculating the many-electron energy bands, wave functions, and Fermi
surfaces based on Kamimura and Suwa’s idea is introduced, and the results calculated for
LaSCO by Ushio and Kamimura [55] are reviewed. Finally, the microscopic origin for the
pseudogap is discussed in section 9.

2. The cluster model

2.1. The model for CuO5 in YBa2Cu3O7−δ

As a model for cluster calculations, we adopt a single CuO5 pyramid embedded in the
compound YBa2Cu3O7−δ (abbreviated as YBCO7−δ hereafter). We label the oxygens in the
CuO2 plane as O(1), and the apical oxygens as O(2). We use the lattice constants reported
by Cavaet al for YBCO7−δ [23]. The number of electrons is determined such that the
formal charge of copper is+2e and that of oxygen is−2e for the undoped case. We also
consider the hole-doped system for YBCO7−δ by subtracting one electron.

To include the effect of the Madelung potential from the ions outside the cluster, the
point charges are placed at exterior-ion sites (+2e for Cu and Ba,−2e for O, and+3e for
Y). The number of point charges is 300 to 1400 for CuO5, depending on the distribution of
the charges of the Cu ions in the Cu–O chains. These point charges determine the Madelung
potential at Cu, O(1), and O(2) sites within the cluster in such a way that the relative value
of the Madelung potential at each site is reproduced so as to coincide with that for the
purely ionic crystal, within less than a few eV.

For the case of a CuO6 cluster in LaSCO, we have varied the Cu–O(2) distancec

according to the experimental results given by Boyceet al [11] and to the theoretical results
given by Shimaet al [7]. The distancec is taken as 2.41̊A, 2.35 Å, 2.30 Å, and 2.24Å,
depending on the Sr concentration, where 2.41Å and 2.30Å correspond to the values ofc
for the compounds withx = 0 (undoped) andx = 0.2, respectively, in the La2−xSrxCuO4

series. In the case of a CuO5 cluster, on the other hand, the Cu(2)–O(2) distance is taken as
2.47Å for YBCO6 and 2.29Å for YBCO7, following the experimental results obtained by
neutron [9] and x-ray [10] diffraction measurements, where Cu(2) represents the Cu ions in
the CuO2 planes while Cu(1) represents the Cu(1) ions in the Cu–O chains.

2.2. The basis set

We express the one-electron orbitals as linear combinations of atomic orbitals; Cu 1s, 2s, 3s,
4s, 2p, 3p, 3d and O 1s, 2s, 2p orbitals are taken into account as the atomic orbitals. Each
atomic orbital is represented as a linear combination of several Gaussian functions. For Cu
3d, 4s and O 2s, 2p atomic orbitals we prepare two basis functions called ‘double-zeta’
functions for each orbital. These are(12s6p4d)/[5s2p2d] for Cu [24] and(10s5p)/[3s2p]
for O [25].

As to the oxygen ions, the diffuse components are usually used by researchers in
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quantum chemistry. The diffuse components, however, cause problems with the point charge
approximation outside of the cluster when a cluster is embedded in a crystal, because the
diffuse components reach the nearest-neighbour sites with considerable amplitudes. Hence
we do not use the diffuse components, although other groups have used them in their
cluster calculations for the copper oxide superconductors [26–28]. Instead of using the
diffuse components for O2−, we use extended O 2p basis functions which were originally
prepared for neutral atoms, by introducing a scaling factor of 0.93. We multiply all of the
Gaussian exponents in the double-zeta basis for the oxygen 2p orbitals by the same scaling
factor. The value of the scaling factor is determined such that the energy of an isolated O2−

ion should be minimized in the Hartree–Fock approximation.

Figure 3. A schematic view of a3B1 multiplet (a) and a1A1 multiplet (b) in a CuO5 pyramid.
A solid arrow represents a localized spin while an open arrow represents the spin of a hole
carrier which occupies an antibonding a∗1 orbital shown in the figure. The spatial extents of the
antibonding a∗1 orbital and of the bonding b1 orbital are also shown in this figure.

2.3. The1A1 and 3B1 multiplets

Like for LaSCO, when holes are doped in YBCO7−δ there are two possibilities as regards
orbitals to accommodate a dopant hole in CuO5. One case is that in which a dopant hole
occupies an antibonding a∗1 orbital consisting of a Cu dz2 orbital and five surrounding oxygen
pσ orbitals, and its spin becomes parallel to a localized spin ofS = 1/2 around a Cu site,
by Hund’s coupling. This multiplet is denoted by3B1, as shown in figure 3(a). We call
this spin-triplet state ‘the Hund’s coupling triplet’. The other case is that in which a dopant
hole occupies a bonding b1 orbital consisting of in-plane oxygen pσ orbitals with a small
Cu dx2−y2, component and its spin becomes anti-parallel to the localized spin as shown in
figure 3(b). This multiplet is denoted by1A1. Since thet–J model given by Zhang and
Rice [29] is based on this1A1 multiplet, we call this spin-singlet multiplet ‘the Zhang–Rice
singlet’. Later we calculate the lowest-state energies of the3B1 and the1A1 multiplets
by the variational method, and determine which of these two multiplets is the lowest in
superconducting YBCO7.
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3. The multi-configuration self-consistent-field method with configuration interaction
(MCSCF-CI method)

We calculate the electronic structure in a CuO5 pyramid or CuO6 octahedron cluster by
the MCSCF-CI method. In this section we give a brief review of how to use this method
for the calculations of the lowest-state energies of the1A1 (or 1A1g in the case of a CuO6
octahedron) and3B1 (or 3B1g) multiplets. First, we determine the one-electron orbitals
by the MCSCF variational method [30–32, 12, 33]. The trial functions are taken for the
Zhang–Rice singlet1A1 (or 1A1g) as

8S = C0|ψ1αψ1βψ2αψ2β · · ·ψnαψnβ|
+
∑
i

∑
a

Caaii | · · ·ψi−1αψi−1βψi+1αψi+1β · · ·ψaαψaβ| (1)

and for the Hund’s coupling triplet3B1g (or 3B1) as

8T = C0|ψ1αψ1β · · ·ψn−1αψn−1βψpαψqα|
+
∑
i

∑
a

Caaii | · · ·ψi−1αψi−1βψi+1αψi+1β · · ·ψaαψaβψpαψqα| (2)

where 2n is the number of electrons in the clusters, and|· · ·| represents a Slater determinant.
The orbitalsψp andψq are always singly occupied in equation (2). In equations (1) and (2)
all of the two-electron configurations are taken into account in the summation overi anda,
so the correlation effect is effectively included in this method. By varying theψi and the
coefficientsC0 andCaaii , we minimize the energy for each multiplet.

Next, we perform the CI calculation, by using the MCSCF one-electron orbitalsψi
determined above as a basis set, and obtain the lowest energy of a multiplet. Since the
main part of the correlation effect has already been included in determining the MCSCF
one-electron orbitals, only a small number of Slater determinants are needed to represent the
lowest state, and thus we can get a clear view of the many-body states by this MCSCF-CI
method, even when the correlation effect is strong. Thus the MCSCF-CI method is the most
suitable variational method for a strongly correlated cluster system [32, 12].

In the MCSCF method we consider all of the orbitals consisting of the Cu 3dx2−y2,
3dz2, 4s and O 2pσ orbitals in the summation overi anda in equations (1) and (2). In the
CI calculation, all of the single-electron excitation configurations among these orbitals are
taken into account.

4. Calculated results for the CuO5 pyramid in YBCO 7−δ

In this section we present the results calculated for the hole-doped CuO5 pyramid cluster
in superconducting YBCO7. In this case, 2n in equations (1) and (2) is 76. For insulating
YBCO6, Sanoet al [34, 35] recently published the calculated result, and thus we omit
describing their calculations in this article and simply present the result, together with those
for YBCO7. In figure 4(a) the crystal structure of YBCO7 is shown. For comparison, that
of insulating YBCO6 is also shown, in figure 4(b). A remarkable difference between the
crystal structures of YBCO7 and YBCO6 is that there exists a Cu–O chain in YBCO7. Like
for LaSCO, there are two orbitals, an antibonding a1 orbital, a∗1, and a bonding b1 orbital,
b1, as possible orbital states for accommodating dopant holes, where the point group of the
CuO5 pyramid is C4v. Sketches of the spatial extent of the a∗

1 and b1 orbitals are shown
in figures 3(a) and 3(b). We have to deal with the1A1 and 3B1 multiplets independently,
following the theoretical method described in section 3. In doing so, we take into account
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Figure 4. The crystal structures of YBCO7−δ . (a) The orthorhombic structure of superconducting
YBCO7. (b) The tetragonal structure of insulating YBCO6.

the effect of the Madelung potential from the ions outside the cluster by placing the point
charges+2 at Cu(2) in the CuO2 plane,+2 at Ba,+3 at Y, and−2 at O. As to the charge
of Cu in the Cu–O chain (Cu(1)),q, we have takenq = +1 for insulating YBCO6 from the
experimental (NMR) result [36]. However, for superconducting YBCO7, the value ofq has
not been established so far. Thus we calculate the energy difference between the1A1 and
3B1 multiplets in the case of YBCO7 as a function ofq, and then investigate the effect of an
inhomogeneous hole distribution in a Cu–O chain on the electronic state, in subsection 4.2.

4.1. The energy difference between the1A1 and 3B1 multiplets for constant charge of Cu(1)
ions in a Cu–O chain

The calculated energy difference between the1A1 and the3B1 multiplets in YBCO7 is
shown in figure 5, as a function of the charge of Cu(1),q. The value ofq and the existence
of O2− ions in the Cu–O chain play crucial roles in determining the Madelung energy at the
apical O site in a CuO5 pyramid. Sanoet al [37] calculated the energy difference between
the 1A1 and 3B1 multiplets for insulating YBCO6 to be 1.3 eV, as seen in figure 5 (closed
circle), where the distance between Cu(2) and the apical O,c, is fixed at 2.47Å. In figure 5
the open circles show the energy difference for YBCO7 as a function ofq, wherec is fixed
at 2.29Å. For YBCO7, it should be recalled that the oxygen ions are introduced to form
a Cu–O chain, as seen in figure 4(a). It is clear from figure 5 that, when the value ofq

decreases, the ground state of the CuO5 pyramid in YBCO7 changes from1A1 to 3B1 at
aroundq ≈ 1.45. This occurs for the following reason: as the value ofq decreases, the
Madelung potential at the apical oxygen site decreases. As a result, the energy difference
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Figure 5. The energy difference between the3B1 and the1A1 multiplets, as a function of
the charge of a Cu(1) ion in a Cu–O chain,q, in a hole-doped CuO5 cluster embedded in
YBCO6 and YBCO7. The closed circle represents the energy difference between the3B1 and
1A1 multiplets in YBCO6 [34, 35]. The open circles represent the energy difference between
the 3B1 and1A1 multiplets in superconducting YBCO7 as a function of constantq for all Cu(1)
ions, wherec is fixed at 2.29Å. Furthermore, the solid diamonds represent the case of the
existence of a CDW in a Cu–O chain, where the results for average values of the charge of the
Cu(1) ions,q̄, of 2.5, 2.3 and 2.0 are shown [38].

between the energy of the a∗1 orbital which contains the pz orbital at the apical oxygen site
and that of the b1 orbital becomes smaller, so Hund’s coupling becomes more effective.

4.2. The effect of a charge-density wave (CDW) in a Cu–O chain

In a previous subsection we found that, in YBCO7, the calculated lowest-state energy is
very sensitive to the charge of Cu(1) in a Cu–O chain,q. In this subsection we investigate
how the multiplets of a CuO5 pyramid are affected by the inhomogeneous hole distribution
in a Cu–O chain—that is, the charge-density wave (CDW). Recently the existence of such
a CDW in a Cu–O chain in YBCO has been reported by various experimental groups [39–
43]. For example, a scanning tunnelling microscopy (STM) experiment [39] and neutron
inelastic scattering experiments [40] have shown the existence of a CDW in a Cu–O chain
in YBCO7. In this paper we try to clarify theoretically how the CDW in a Cu–O chain
affects the electronic structure of the hole-doped CuO5 pyramid cluster. This is the first
theoretical study on the effect of a CDW in a Cu–O chain on the electronic structure of a
CuO5 pyramid.

There is a close connection between the CDW modulation wavelength and the hole
concentration in a Cu–O chain. The observed modulation wavelength of a CDW in a Cu–O
chain takes a value between 13 and 16Å. Suppose that the charge of a Cu(1),q, is +2.5
and that the states of the holes in a Cu–O chain can be expressed as a one-dimensional
energy band. This means that there are 1.5 holes in a Cu–O chain and that three quarters of
the energy band for the Cu–O chain is filled by holes. In this case the Fermi wavenumber
kF is given byπ/4a approximately, wherea is a Cu(1)–Cu(1) distance along the chain
and is 3.8Å for YBCO7. Thus the CDW modulation wavelength becomes 15.2Å, because
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Figure 6. The charge distribution of Cu(1) ions in Cu–O chains and of Cu(2) ions in CuO2 planes
for the case in which the charge of Cu(1) is modulated by the CDW modulation wavelength and
the average value of Cu(1)’s chargeq̄ is equal to 2.5. Line A represents the Cu–O chain which
includes the Cu(1) ion immediately above the hatched CuO5 pyramid under consideration. Line
B represents a CuO2 plane which includes the calculated CuO5 pyramid.

the modulation wavelengthλCDW is given byλCDW = 2π/2kF , and it is nearly equal to
4a. This value is consistent with the experimental results [39, 40]. In superconducting
YBCO7, an oxygen introduced in a Cu–O chain produces two holes in a unit cell consisting
of a Cu–O chain and two CuO2 planes. Considering the charges+3e for Y, +2e for Ba,
+2e for Cu(2) and−2e for O in the CuO2 plane, and+1e for Cu(1) and−2e for O in the
Cu–O chain, and further distributing the charge of the dopant holes over a Cu–O chain and
two CuO2 planes in a unit cell, the following equation describes the relationship between
the number of holes in the Cu–O chain,η, and that in the CuO2 plane,ζ , in the unit cell,
from the condition of charge neutrality;

η + 2ζ = 2. (3)

Thus the charge of Cu in a Cu–O chain,q, is related toη by the relationq = 1+ η. Since
the values ofη and ζ have not been determined experimentally so far, we calculate the
lowest energies of the1A1 and 3B1 multiplets by varying the value ofη. In the case of a
uniform charge distribution for the charge of Cu(1) in a Cu–O chain, for example, when we
takeq = +2.5, η becomes 1.5, and thusζ is 0.25 from equation (3). This means that there
is one hole per four CuO5 pyramids. Since a CuO5 pyramid cluster is embedded in YBCO7,
we must take into account the effect of the Madelung potential from the ions outside the
cluster by putting the point charge+2e at Cu(2) in the CuO2 plane,+2e at Ba,+3e at
Y, and−2e at O. As to the charge of Cu(1) in the Cu–O chain, we may place the point
charges according to the CDW modulation wavelength, as shown on line A in figure 6. For
example, we place Cu(1)1.75+ at intervals of every four Cu(1) sites along the line of the
Cu–O chain, which corresponds to the Cu(1) immediately above the CuO5 pyramid cluster
under consideration, while we put the charge+2.75e at the remaining Cu(1) sites on line A.
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Thus the averaged charge of the Cu(1) atoms on line A is+2.5e. In the same way, we put
the charge+3e at Cu(2) sites at intervals of four sites with the same modulation as that of
the Cu–O chain, and put the charge+2e at the remaining Cu(2) sites on line B in figure 6
which is parallel to line A. Line B includes the CuO5 pyramid under consideration. Thus
the averaged charge of the Cu(2) ions and the averaged hole concentration in a CuO2 plane
on line B become 2.25e and 0.25, respectively. As to the charges of all of the Cu(2) ions
except those on line B, we take+2.25e as an averaged charge, while as regards the charges
of all of the Cu(1) ions except the Cu(1) ions on line A, we take+2.5e as an averaged
charge, as shown in figure 6. In this way we consider the CDW-like hole distribution under
conditions in which charge neutrality is conserved.

On the basis of the charge distribution shown in figure 6, we have calculated the
energies of the1A1 and 3B1 multiplets by the MCSCF-CI method. The calculated results
are shown by solid diamonds in figure 5, where the energy differences between the1A1 and
3B1 multiplets are shown on the vertical axis, andq on the horizontal axis represents the
averaged charge of Cu(1) ions in a Cu–O chain. For comparison, we also show the energy
difference between the1A1 and 3B1 multiplets calculated for the case of a constant charge
distribution in a Cu–O chain as a function ofq [34, 35].

As shown in figure 5, in the case of a constant charge distribution of the Cu(1) ions in the
Cu–O chain, the energy difference between1A1 and3B1 multiplets is larger than that in the
case of a CDW. For example, it is 1.55 eV forq = +2.5. As shown by solid diamonds in
figure 5, for the case where the CDW hole distribution is taken into account, the calculated
energy difference between the1A1 and 3B1 multiplets is significantly reduced. In the case
whereq = +2.5 it becomes 0.65 eV. Thus the electronic structure is strongly affected by
the charge distribution in a Cu–O chain caused by the CDW. The decrease of the energy
difference between these two multiplets is reasonable, because in this case the Madelung
potential at the apical O in a CuO5 cluster becomes lower for hole carriers. However, since
the holes in the Cu–O chains occupy both Cu(1) and O sites, the charge of Cu(1) in a Cu–O
chain becomes lower than+2.5e. This favours the3B1 multiplet energetically, because the
Madelung potential at the apical O site becomes even lower. Thus we conclude that, when
the averaged charge of Cu(1) ions takes a value between 2.0 and 2.3, the energy difference
between1A1 and 3B1 multiplets becomes of the same order of magnitude as the transfer
interaction between3B1 and1A1 multiplets at neighbouring CuO5 pyramids, 0.4 eV, because
of the existence of the CDW in the Cu–O chain.

5. The Kamimura–Suwa model: electronic structure of underdoped cuprate

Now we construct the many-electron electronic structure of the underdoped cuprates, using
the results calculated for a CuO6 octahedron embedded in LaSCO and for a CuO5 pyramid
in YBCO7. Before presenting the results, we briefly describe the theoretical treatment given
by Kamimura and Suwa [18] which we call the Kamimura–Suwa model hereafter. As an
example, we choose LaSCO here. According to the Kamimura–Suwa model, there exist
areas in each CuO2 layer in which the localized spins form an antiferromagnetic ordering.
These areas are different from an ordinary domain because the boundary of these areas
represented by the spin frustration moves by the spin-fluctuation effect. Thus, we call these
areas ‘spin-correlated regions’. The size of each spin-correlated region is characterized
by the spin-correlation length. Then, following the results of Kamimura and Eto [12], a
dopant hole with up spin in a spin-correlated region occupies an a∗

1g orbital, φa1g, at CuO6

octahedra with localized up-spins, because of the energy gain of about 2 eV due to the
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Figure 7. Schematic views of the coherent motion of a dopant hole from high-spin to low-spin
states in the presence of antiferromagnetic ordering of the localized spin system. Here (a) and
(b) correspond to up-spin and down-spin coherent states of dopant holes, respectively, while (c)
represents a coherent motion of an up-spin carrier from a3B1g to a 1A1g multiplet. It should be
noticed that the relative positioning of the a∗1g and b1g levels changes according to the doping
concentration. The energy levels in this figure are obtained from the results of Kamimura and
Eto (reference [12]).

intra-atomic exchange interaction between the spins of an a∗
1g hole and a localized hole in

an antibonding b1g orbital (b∗1g) (Hund’s coupling) at the same CuO6 octahedron, as shown
in figure 7(c). As a result, the spin-triplet3B1g state is created. Since Hund’s coupling
prevents a hole with up spin from occupying an a∗

1g orbital in a CuO6 octahedron with
a localized down spin, a hole with up spin cannot hop into a neighbouring a∗

1g orbital.
Instead, it can enter into a bonding b1g orbital, φb1g, in a neighbouring CuO6 octahedron
with localized down spin without destroying the antiferromagnetic ordering. In this case
there is an energy gain of about 4.0 eV due to the antiferromagnetic exchange interaction
between holes in bonding and antibonding b1g orbitals, as shown in figure 7(c). This results
in the Zhang–Rice singlet state. In this way the dopant holes can move resonantly from a
CuO6 octahedron to a neighbouring CuO6 octahedron in a CuO2 layer by means of a transfer
interaction of about 0.3 eV without destroying the local antiferromagnetic (AF) ordering, as
shown in figures 7(a) and 7(b). Such coherent motion of the dopant holes is possible when
the spin-correlation length is much larger than the distance between neighbouring copper
sites and the magnitudes of the transfer interactions between neighbouring CuO6 clusters
are larger than the energy difference between low- and high-spin states. As a result, a
metallic state is created, and it simultaneously causes superconductivity, as was shown by
Kamimuraet al [20].

Kamimura and Suwa [18] have expressed the above coherent motion of dopant holes
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Figure 8. Schematic views of the coherent motion of a
dopant hole from high-spin to low-spin states in the presence of
antiferromagnetic ordering of the localized spin system in the case
of superconducting YBCO7. Here (a) and (b) correspond to up-
spin and down-spin coherent states of dopant holes, respectively.

in a metallic state by the following forms of Bloch-type wave functions:

9kα(r)χ =
∑
R

exp(ik ·R)[Akφa∗1g
(r −R)+ Bkφb1g(r −R− d)]αχ (4a)

and

9−kβ(r)χ =
∑
R

exp(ik ·R)[A−kφa∗1g
(r −R− d)+ B−kφb1g(r −R)]βχ (4b)

whereα andβ represent the up- and down-spin states of a dopant hole, respectively. The
spin functionχ represents the antiferromagnetic ordering state of the Cu localized spins
in a CuO2 layer, where the up and down spins are assigned atR andR + d Cu sites,
respectively. Furthermore,d is a vector representing the distance between Cu sites with
localized up and down spins in an antiferromagnetic unit cell. The summation overR is
carried out for the antiferromagnetic unit cells. In both equations (4a) and (4b), the first
and the second terms in the square brackets represent Hund’s coupling and Zhang–Rice
multiplets, respectively. In the case of YBCO7, coherent motion of a dopant hole due to
the alternate appearance of1A1 and 3B1 multiplets is also possible when a CDW exists in
a Cu–O chain, as shown in figure 8.

6. Experimental evidence for the increase of the spin-correlation length with the hole
concentration

In the Kamimura–Suwa model, the spin-correlation length must increase in the underdoped
region when the hole concentration increases, in order for every hole carrier to move over a
considerable distance to form a coherent state. As to the hole concentration dependence of



High-temperature superconductivity in underdoped cuprates 11357

the spin-correlation length, Masonet al [44] and Yamadaet al [45] have recently reported
independently that the spin-correlation length in the underdoped region of La2−xSrxCuO4

increases fromx = 0.05 with increase of the hole concentrationx, and reaches a value of
about 50Å for the optimum doping (x = 0.15). These experimental results support the
Kamimura–Suwa model in which the metallic and superconducting states correspond to a
coherent state characterized by the coexistence of the local spin ordering and the ordering
which takes the form of the alternating appearance of3B1g and 1A1g multiplets in the
spin-correlated region.

7. The effective Hamiltonian for the Kamimura–Suwa model

The effective Hamiltonian that we use to describe the Kamimura–Suwa model consists of
four parts: the effective one-electron Hamiltonian (Heff) for a∗1g- and b1g-orbital states, the
transfer interaction between CuO6 octahedra (Htr), the superexchange interaction between
the Cu dx2−y2 localized spins (HAF), and the exchange interactions between spins of dopant
holes and dx2−y2 holes within the same CuO6 octahedron (Hex). Thus we have

H = Heff +Htr +HAF +Hex

=
∑
i,m,σ

εmC
†
imσCimσ +

∑
〈i,j〉,m,n,σ

tmn(C
†
imσCjnσ + HC)+ J

∑
〈i,j〉

Si · Sj

+
∑
i,m

Km si,m · Si (5)

where εm (m = a∗1g or b1g) represents the effective one-electron energy of the a∗
1g- and

b1g-orbital states,C†imσ (Cimσ ) the creation (annihilation) operator of a dopant hole in the
ith CuO6 octahedron,tmn the effective transfer of a dopant hole betweenm-type andn-
type orbitals of neighbouring CuO6 octahedra,J the superexchange coupling between the
spinsSi andSj of dx2−y2 localized holes in the antibonding b1g orbital (b∗1g) at the nearest-
neighbour Cu sitesi and j (J > 0, antiferromagnetic), andKm the exchange integral for
the exchange between the spin of a dopant holesim and the dx2−y2 localized spinSi in
the ith CuO6 octahedron (Ka1g < 0 for the Hund’s coupling triplet andKb1g > 0 for the
Zhang–Rice singlet).

We call this model Hamiltonian of the coupled spin-fermion type the ‘extended two-
storey-house model’, where it should be noticed that the upper-storey carrier state consists
of two kinds of state, a∗1g and b1g, while the lower storey consists of localized spins. In
this sense, the present model corresponds to a three-band system if we include the localized
spin state in the lower storey, so we have used the word ‘extended’ in view of a previous
‘two-storey-house model’ proposed by Kamimura [6]. In fact, the term ‘two-storey-house
model’ was acknowledged by Cohen [46]. In the extended two-storey-house model, each
band accommodates only one kind of spin, i.e. up spin or down spin. For the energy
bands of up and down spins which have exactly the same energy dispersion, the spatial
distributions of the wave functions in real space are different. Thus this unusual electronic
state is basically a non-Fermi liquid.

8. Energy bands, the Fermi surface, and the density of states in the superconducting
state of LaSCO

Kamimura and Ushio [13, 19] have calculated an effective one-electron-type energy band
structure for the upper-storey carriers from the Hamiltonian (5) by separating off the



11358 H Kamimura et al

localized spin system in the lower storey by applying the molecular-field approximation
to the fourth term in equation (5). Since the spins of localized holes in b∗

1g orbitals form an
antiferromagnetic ordering, Kamimura and Ushio have selected the unit cell in such a way
that it contains two neighbouring CuO6 octahedra, called A and B sites, and have considered
the 34× 34-dimensional matrix (̃H ) of the Hamiltonian (5), where the 2px , 2py , and 2pz
atomic orbitals for each of eight oxygen atoms and 3dyz, 3dxz, 3dxy , 3dx2−y2, and 3dz2

atomic orbitals for each of two Cu atoms in the unit cell are taken as the basis functions.
We have called this unit cell the ‘antiferromagnetic unit cell’. The Hamiltonian matrixH̃

consists of two parts, the one-electron partH̃0 and the effective-interaction part̃Hint, the
latter of which includes the exchange interactions between the carrier spins in the upper
storey and the localized spins in the lower storey. In the case of a dopant hole with up spin,
the energy of a b∗1g state in a CuO6 octahedron with localized up spin (an A site) is taken
to be lower than that in a CuO6 cluster with localized down spin (a B site) by the Hubbard
U -interaction, which is taken as 10 eV in the present case. Furthermore, the energy of an
a∗1g state at an A site is taken to be lower than that at a B site by Hund’s coupling energy,
which is 2 eV, while the energy of a b1g state at a B site is taken to be lower than that at
an A site by the antiferromagnetic exchange energy in the1A1g state, which is 4 eV. Thus
we may takeKa1g = −2 eV andKb1g = 4 eV in equation (5).

In this way the essential part of the many-body interaction terms in Hamiltonian
(5) is taken into account in the effective one-electron terms in the 34× 34-dimensional
effective-interaction part̃Hint. This kind of theoretical treatment is similar in concept to the
‘LDA + U ’ method developed by Anisimovet al [47] for copper oxides, but an essential
point in the present treatment developed by Kamimura and Ushio [19] is the separation of
the localized spin system in the lower storey from the carrier system in the upper storey,
by expressingHex in equation (5) as∑

i,m

Km si,m · 〈Si〉

by using the molecular-field approximation, where〈Si〉 is the average value of a localized
spin at theith Cu site, and the inclusion of the exchange interactions between the spins
in the upper and lower storeys in the effective one-electron terms for the carriers of the
upper storey. As a result, all of the matrix elements in the 34×34-dimensional Hamiltonian
matrix (H̃ ) are expressed in the form of one-electron-type ones, and thus one-electron-type
energy bands of carriers in the upper storey can be obtained by diagonalizingH̃ .

Once this has been done, all of the matrix elements related to the transfer interactions
which appear in the 34×34-dimensional Hamiltonian matrix (̃H0) can be estimated from the
Slater–Koster parameters determined by DeWeertet al [48] for La2CuO4. Furthermore, the
value for the difference betweenεa1g andεb1g has been taken in such a way as to reproduce
the energy difference between the multiplet states3B1g and 1A1g calculated by Kamimura
and Eto [12]. In this way, Kamimura and Ushio were able to separate the localized spin
part in the lower storey from that of the upper storey, and they obtained a band structure
including the many-body effects in a mean-field sense for the itinerant carriers in LaSCO.
The band structure for up-spin dopant holes thus obtained is shown in figure 9, where the
ordinary Brillouin zone corresponding to an ordinary unit cell which includes only one
CuO6 octahedron is also shown in the upper part of the figure. The same shape of band
structure is also obtained for down-spin dopant holes. In undoped La2CuO4, all of the
bands are occupied by electrons, so La2CuO4 is an insulator, which is consistent with the
experimental result [22]. In figure 9 the highest occupied band is indicated by a solid line
denoted as No 1. The top of the highest band is located at the1 point in the ordinary
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Figure 9. The band structure with the many-body effect included for up-spin dopant holes,
obtained by solving the effective one-electron-type 34× 34-dimensional Hamiltonian matrix̃H
for an antiferromagnetic unit cell; the ordinary Brillouin zone corresponding to an ordinary unit
cell consisting of a single CuO6 octahedron is shown in the upper part of the figure. The highest
occupied band is marked as the No 1 band. The1 point corresponds to (π/2a, π/2a, 0), while
the G1 point corresponds to (π /a, 0, 0). In the figure, the Cu–O–Cu distance,a, is taken to be
unity.

Brillouin zone, where1 corresponds to the edge of the antiferromagnetic Brillouin zone,
(π/2a, π/2a, 0), with a being the distance between neighbouring Cu sites. In this context,
the present concept of the energy bands in figure 9 is completely different from the ordinary
concept of energy bands in the one-electron picture, such as those calculated using the LDA.

When Sr ions are doped, holes begin to occupy the top of the highest band (No 1) at1.
At the critical hole concentrationx0 at which the superconductivity appears, the Fermi level
in the No 1 band is located at an energy much higher than that of the G1 state, where G1 in
the Brillouin zone corresponds to (π/a, 0, 0) and also to a singularity of the two-dimensional
density of states. In figure 10 the wave functions at the1 and G1 points for the No 1 band
are shown, where the right-hand side of the figure corresponds to a CuO6 octahedron with
localized up spin (an A site) and the left-hand side corresponds to a CuO6 octahedron with
localized down spin (a B site). One can see from this figure that for concentrations below
the onset of superconductivity the holes with up spin are accommodated in b1g orbitals
constructed mainly from oxygen pσ orbitals in the CuO2 plane for the A site, which is
consistent with the result of the cluster calculation by Kamimura and Eto [12], while in
the superconducting concentration regime the holes move from an a∗

1g orbital at the A site
to a b1g orbital at the B site, consistently with the prediction made by Kamimura and
Suwa [18]. Here it should be remarked that the mixing ratio of the Zhang–Rice singlet is
always dominant for the Hund’s coupling triplet. Quantitatively, the ratio of the1A1g to the
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Figure 10. The wave functions at1 and G1 points.
Here, the right-hand side of the figure corresponds to
a CuO6 cluster with localized up-spin (an A site) and
the left-hand side to a CuO6 cluster with localized
down spin (a B site).

Figure 11. The Fermi surface forx = 0.15 calculated for the No 1 band. Here two kinds of
Brillouin zone are also shown. One, the outermost part, is the ordinary Brillouin zone, and the
inner part is the folded Brillouin zone for the antiferromagnetic unit cell in LaSCO. Here the
kx -axis is taken along0G1, corresponding to thex-axis (the Cu–O–Cu direction) in real space.

3B1g component is at most 8:2 in the underdoped region of LaSCO, consistently with the
experimental results given by Chenet al [14].
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Figure 12. The electronic specific heat of LaSCO as a function of the hole concentrationx.
The solid lines show the results calculated for the No 1 band in the renormalized band structure
[55] while the crosses show the experimental data given by Loramet al [56]. The energy is
measured from the top of the band. Holes enter from the top.

Figure 13. A way of expressing the location of
the Fermi surfaces in thekx–ky plane in terms of
theQ1- andQ2-vectors which are the bisectors
of the kx - and ky -axes, and a schematic view
of the nesting vectorsQ′1, Q′′1, Q′2, andQ′′2
connecting the Fermi surfaces.

Kamimura and Ushio have also calculated the Fermi surfaces and the density of states of
the No 1 band for LaSCO. For example, the Fermi surfaces forx = 0.15 calculated by them
are shown in figure 11 and the density of states for the No 1 band is shown in figure 12.
The Fermi surface forx = 0.15 consists of two pairs of extremely flat tubes, which are
directed along bisectors between thekx-axis and theky-axis, and are orthogonal to each
other. The distance between the two Fermi surfaces facing each other and their directions
are close to theQ1- andQ2-vectors shown in figure 13, where theQ1 andQ2-vectors are
equivalent to the vectors(π/a, π/a,0) and(−π/a, π/a,0), respectively. The cross section
of each Fermi surface facing towards the0 point, the centre of the Brillouin zone, is very
wide, and the dispersion of the highest band is relatively flat. These unique features of
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the energy dispersion of the No 1 band and Fermi surfaces have been checked by angle-
resolved UPS experiments for Bi2Sr2CuO6 (Bi2201), Bi2Sr2CaCu2O8+λ (Bi2212) [49–51],
and Bi2Sr2Ca1−x2DyxCu2O8+δ. In particular, Aebiet al [49, 50] have observed a

√
2×√2

superstructure, supporting the prediction of the existence of short-range antiferromagnetic
correlations made by Kamimura and Suwa. The features of the calculated Fermi surface
change drastically in the overdoped region at aroundx ∼ 0.2. In this overdoped region,
four flat sections of the Fermi surface merge into one ‘large Fermi surface.’ This may
explain the anomalous phenomena observed in various normal-state properties such as the
pseudogap.

In connection with the features of the Fermi surfaces shown in figure 11, we would like
to point out the possibility of nesting of Fermi surfaces with different spins and of nesting of
those with the same spin for the nesting vectorsQ′1,Q′′1,Q′2, andQ′′2, which deviate slightly
from the commensurateQ1- andQ2-vectors, as seen in figure 13. The former type of nesting
may cause anomalies in spin excitation spectra while the latter is related to anomalies in
phonon spectra for the above nesting vectors. The appearance of incommensurate peaks
in the spin excitation spectra of LaSCO observed in neutron diffraction experiments [52]
might be related to the above anomalies.

The density of states for the No 1 band shown in figure 12 has a sharp peak atEF
corresponding tox ∼ 0.3 in La2−xSrxCuO4. The appearance of this sharp peak is due to a
two-dimensional singularity at the G1 point, suppressed by the transfer interaction between
adjacent CuO2 layers. A similar calculation is now being made for YBCO7 [53].

9. Summary, and remarks on the origin of the pseudogap

By reviewing the first-principles studies of the many-electron electronic structures of under-
doped La2−xSrxCuO4 and YBa2Cu3O7 performed by Kamimura and co-workers, unusual
electronic states have been clarified. That is, the dopant holes move coherently by taking the
Zhang–Rice spin singlet and Hund’s coupling spin triplet alternately in the spin-correlated
region of antiferromagnetic ordering due to the Cu localized spins. We have shown that
this creates a metallic state which leads to superconductivity. The coexistence of (i) the
antiferromagnetic spin ordering and (ii) the ordering in the appearance of the Zhang–Rice
singlet and the Hund’s coupling triplet is essentially important, and results in the small
Fermi surface for a carrier system and the decrease in the electronic entropy below a certain
temperature at which the Fermi surface changes from a larger one to smaller ones. Recently,
Loram et al [54] concluded, from experimental results on the electronic specific heat, the
electronic entropy, and the spin susceptibility, that a states-non-conserving pseudogap exists
in the quasiparticle spectrum in underdoped cuprates and that the pseudogap energy reflects
the energy scale of the correlated holes and spins, and is not due to superconducting
fluctuations or additional competing interactions. We discuss the microscopic origin of
the pseudogap from the present view of non-Fermi liquid. According to the Kamimura–
Suwa model, the localized holes in the antibonding b1g orbitals form an antiferromagnetic
ordering in the spin-correlated region. The entropy loss observed aboveTc in underdoped
LaSCO is due to the formation of the local antiferromagnetic ordering mentioned above.
The observed temperature dependence of the spin susceptibility in underdoped LaSCO can
be explained by the contribution from the spin-correlated region of local antiferromagnetic
ordering. Then the contribution to the electronic specific heat comes from the hole carriers
in the small Fermi surfaces shown in figure 11. In fact, the density of states at the Fermi
energy calculated by Ushio and Kamimura [55] for La2−xSxCuO4 shown in figure 12 is in
good agreement with that obtained from the observed electronic specific heat data given
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by Loram et al [56] for 0.05 6 x 6 0.2, as seen in figure 12. When the temperature
increases to a value much higher thanTc, the spin-correlation length decreases, and thus
the metallic state due to the alternating appearance of the1A1g Zhang–Rice singlet and the
3B1g Hund’s coupling triplet disappears. As a result, the small Fermi surfaces change to
the large Fermi surface obtained from an ordinary band-structure calculation in the local
density approximation. In this context, we conclude in view of the Kamimura–Suwa model
that the origin of the pseudogap is ascribable to the change from the large Fermi surface to
the small Fermi surfaces caused by the appearance of local antiferromagnetic ordering due
to the presence of the Cu localized spins.
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[41] Grévin B, Berthier Y, Collin G and Mendels P 1998Phys. Rev. Lett.80 2405
[42] Gagnon R, Pu S, Ellman B and Taillefer L 1997Phys. Rev. Lett.78 1976
[43] See also

Bianconi A B and Saini N L (ed) 1997 Proc. Int. Conf. on Stripes, Lattice Instabilities and HighTc
Superconductivity; J. Supercond.10 (special issue)

[44] Mason T E, Schr̈oder A, Aeppli G, Mook H A and Hayden S M 1996Phys. Rev. Lett.77 1604
[45] Yamada Ket al 1997J. Supercond.10 343
[46] Cohen M L 1991 New Horizons in Low-Dimensional Electron Systems, A Festschrift in Honour of Professor
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